
AD-Ri47 863 INFINITE ORDER AUTOREGRESSIVE REPRESENTATIONS OF /
PIULTI VARIATE STATIONARY..(U) NORTH CAROLINA UNIV AT
CHAPEL HILL CENTER FOR STOCHASTIC PROC.. M POURAHMADI

UNCLASSIFIED SEP 84 TR-75 RFOSR-TR-84-0990 F/G 12/1i N



.16

12.

1.0~j1.3

1.2511111125

MICROCOPY RESOLUTION TEST CHART
hAtiW#AAL WWuRE OF STAIOARS-O9)-A



CENTER FOR STOCHASTIC PROCESSES

00 Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

r44

INFINITE ORDER AUTOREGRESSIVE REPRESENTATIONS OF

MULTI VARIATE STATIONARY STOCHASTIC PROCESSES

by

Mohsen Pourahmadi

Technical Report #75

C...)September 1984 7T1
W.0V211

1120 0072



UNCLASSIFIED
SICURI1TY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I.ai REPORT SECURITY CLASSIFICATION 1b, RIESTRICTIVE MARKINGS

UNCLASSIFIED
2. SECURITYI CLASSIFICATION AUTHORITY 3 DIST RIBUT IONtAVAI LAGI I TV Of REPORT

__________________________________Approved for public release; distribution
2b. DECLASSIF ICATION/DOWNGRADING SCHEDULE unlmied

a PERFORMIING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMSER(S,

TR75AFOSR-TRU G4.,
6. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL To. NAME OF MONITORING ORGANIZATION

University of North ftapplicable

Carolina IAir Force Office of Scientific Research

* c. ADDRESS Clty. State and ZIP Cod*) 7b. ADDRESS (City. Sutdd and ZIP Codei,
Statistics Department, Center for -Directorate-of-Mathematical & Information
Stochastic Processes, Phillips. Hall 039-A, Sciences, Bolling AFB DC 20332-6448
Chapel Hill NC 27514k

Go.a NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
* ORGANIZATION (ItapDliciblei

AFOSR . F49620-82-C-0009

9c. ADDRESS 'Caly. State and ZIP Code, 10. SOURCE Of FUNDING NOS

PROGRAMA PROJECT I TASK WORK IwNITL
ELEMENT NO NO. NO O0

Bolling AFB DC 20332-6448 161102F 2304 j A5
I I T)TLE IInciude Security Cha~wiftion,

INFINITE ORDER AUTOREGRESSIVE REPRESEN4TATIONS OF MULTIVARIATE STATIONARY STOCASIC PROCES;ES

12. PERSONAL AUTHOR(S)
Mohsen Pourahrnadi

13a, TVPE OF REPORT 13b- TIME COVERED 1ii. DATE OF REPORT (Yr. Mo.. Deyi 15. PAGE COUN4T

Technical FRM____ O____ SEP 84 20
'G. S6PPLEMENTARY NOTAT!ON

17CSTCODES 18S SUBJECT TERMS (Conue an 'euere if nemiralv and Idenrtefy by block number,

FIL -T7 -- SBS Autoregressive and moving average representation; q-variate
stationary processes; spectral density matrix; Abel and

1] Cesaro summability.
19. ASTRACT sConlinue oi rever, of freemrf and iden tify by block numtber,

Consider a q-variate weakly stationary stochastic process [iX with the spectral density
n

W. The problem of autoregressive representation of [XI] or equivalently the auto-

nn

infinite past is studied. It is shown that for every W in z large class of densities,

the corresponding process has a mean convergent autoregressive representation. This

class includes as special subclasses, the densities studied by Masani (1960) and the
-1 1

author (1984). As a consequence it is shown that the condition W E L or
qxq

minimality of [iX I is dispensable for this problem. When W is not in this class or whein
n

W has zeros of order 2 or more, it is shown that in this case [iX ] has a mean Abel
n

summable or mean--compounded Cesaro summable autoregressive representation.
*20 OISTRISUTION AvAILABILiTy O~F ABSTRACT 121 ABSTRACT SECQRITY CLASS4§:ICATIC%

U,.%CLASSFED vftIM,T*D SAME AS -P D1, IJS9P! IN2LASS 77E

22s NAME -li dIESONS,SLE 22L,, 'E..EP'-r%E NUMBL93 :21 DQ-- S-%

_MAJ Brian W. Woodruff I(202) 767- 50.-7AZ

*DO FORM 1473.83 APR E~ C % 5 . -i 1 S. E

SE*PT 7.AS-F t -S

~ .* **W*



INFINITE ORDLR AUTOREGRESSIVE co

Aeio QRA-II - REPRESENTATIONS OF MULTIVARIATE .... j
DTIC TAB PO ESS

Unannounced STATIONARY STOCHASTIC PROCESSES

_______________a_______n Mohsen Pourahmadi
Center for Stochastic Processes

B- Department of Statistics
Di-strlbution/ University of North Carolina -

Availability Codes Chapel Hill, N.C. 27514
-- Avail and/or S

Dist Special and

Department of Mathematical Sciences 0
Northern Illinois University 0A . DeKalb, IL 60115

Abstract. Consider a q-variate weakly stationary stochastic process {X with
n

the spectral density W. The problem of autoregressive representation of {X .
n

or equivalently the autoregressive representation of the linear least squares

predictor of X based on the infinite past is studied. It is shown that for
n

every W in a large class of densities, the corresponding process has a mean

convergent autoregressive representation. This class includes as special sub-

classes, the densities studied by Masani (1960) and the author (1984). As a

consequence it is shown that the condition W e L or minimality of {X Iqxq n

is dispensable for this problem. When W is not in this class or when W has I.--

zeros of order 2 or more, it is shown that in this case {X I has a mean Abel
n

sun:nahle or mean compounded Cesgro summable autoregressive representation.

AMS 1980 Subject Classification: Primary 62M10; Secondary 60G12

Keywords and Pharases: q-variate stationary processes, autoregressive and moving

average representation, spectral density matrix, Abel and Cesiro summability.

1 Research supported by the NSF Grant MCS-8301240 and the AFOSR Grant F4962082
C(JO~'. -'.' 9."j

2 This work was done while the author was on leave from the Department of

Mathematical Sciences, Northern Illinois University.

?I-;

~ : K~>>.~K'..KvK:.K:.K.i..> .-- _



-2-

1. Introduction.

.>While it is well-known that every purely nondeterministic full rank q-

variate weakly stationary stochastic process-t5Sp)P {, I with the spectral

density W has an (infinite order) one-sided moving average representation, not

every such process can have a mean convergent (infinite order) autoregressive

representation (ARR) and the problem of ARR of such processes has not received

the attention which it deserves. Due to the importance of AIR in prediction

theory, and particularly in the statistical theory of multivariate time series,

this paper is devoted to the problem of finding the weakest condition on W

which guarantees the existence of an infinite order ARR for {X 1.
In

To be more precise, we say that the SSP{X } has a mean convergent (summ-

able) ARR if there exists a sequence {Ak}k= of constant q x q matrices

such that, for each n,

WL ) - .

(1.1) Xn = AXn +n, 

k=1

where {E I is the innovation process of {X I and the infinite seriesn n
AkX is to be convergent (summable) in the mean. This representation of"
k= n-kk=1 '

the process {XnI as an infinite order stochastic difference equation can also

be regarded as the inversion of the one-sided moving average respresentation of

X given in(2.6). Such inversion of the one-sided moving average representa-

tion of a q-variate SSP plays a vital role in the statistical estimation of the A
parameters of {X }. For the notation and definitions see Section 2.n

It is obvious that the problem of ARR {Xn1, cf. (1.1). is equivalent to 4

the problem of ARR of X (the linear least squares predictor of X based

on {Xk; k>-l):

(1.2) Xnln 1 AKXk
njn-1 *.. , .-'
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which has been studied by Wiener and Masani [16], and !lasani [ 7 J.

It follows from the isomorphism between the time and spectral domains of

{X I that the infinite series (1.1) or (1.2) is mean convergent (sunuable),n

if and only if the isomorph of E in L (W) has a convergent (summable)n

Fourier series in the norm of L2 (W). For a purely nondeterministic full rank

SSP {X } with the spectral density W = " and G the one-step ahead predic-n

tion error matrix, it is well-known [6, II, p.115] that the function G 1e

in L 2W) is the isomorph of e in M(X). Thus, the series in (1.1) is meann •

convergent (summable), if and only if the Fourier series of 0 is convergent

4-1 2(summable) to - in the norm .of L (W). Also, it can be shown that the

A
(\*1)-step ahead (v > 0) linear least squares predictor Xn+nl based on -

{Xn; k>1I has a mean convergent (summable) ARR, if and only if the Fouriern-k
-1 -l 2

series of - is convergent (summable) to 'D_ in the norm of L (W). (This

latter assertion for the univariate processes is proved by Miamee and Salehi [11]

in the spectral domain and by Bloomfield [3] in the time domain.)

From the previous discussion the convergence (summability) of the Fourier

-l 2series of ¢- to 4- in the norm of L (W) emerges as the only spectral

necessary and sufficient condition for the existence of a mean convergent (summ-

able) ARR of fX 1. Although this condition is not concrete in terms of W4, itn
is extremely useful in obtaining some useful concrete sufficient conditions in 0

terms of W for the ARR of {X n. These conditions are stated and proved in %

Section 3 by using some techniques from harmonic analysis. In the following

we review and discuss the implication of these conditions for the problem of

ARR of {X '"
n

.. -.:

...................... .................................................
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In 1958, it was shown by Wiener and Masani [16] that the boundedness con-

dition c I < W -< d I, where 0 < c < d < ®, is sufficient for the existence

of a mean convergent ARR of {X 1. Later, Masani [7, Theorem 5.2] weakened this
n

severe boundedness condition considerably and replaced it by

(1.3) W L' , W 1  Ll "
qxq qxq

It was pointed out by Masani [7, p. 143] that the condition W e L in (1.3)

is unduly strong and it would be worth while to relax it. (It was also conjec-

tured by Feldman [4] that the condition W E LOO is dispensable.)
qoxq

In [13] the author has shown that, indeed, the restriction W c L isqxq

dispensable. This is done by employing the equivalence between the convergence

of Fourier series of all functions in L (W) and the positivity of the angle •

between the "past and present" subspace and the "future" subspace of tX } cf.

Theorem 3.1. Thus, we have from Theorem 3.1 that {X has a mean convergent
n

ARR if

(1.4) o > 0 ( or p(W) < 1).

For q = 1, i.e. a scalar density W, it is well-known [b] that p(W) 1,

if and only if W = exp(u + v), where u and v are bounded real-valued func-

tions with 11 vi < w12. V denotes the harmonic conjugate of V. From this

characterization of scalar densities satisfying (1.4) it follows that a matrical

density satisfying (1.4) is not necessarily bounded. For some partial character- * ft

izations of matrix-valued densities satisfying (1.4) see [2, 13].

It is shown in [13] that (1.3) and (1.4) offer two independent sufficient

conditions forthe existence of mean convergent ARR of {Xn }. Furthermore, condi-

tions (1.3) and (1.4) both entail that W" c , i.e. they require that theqxq

process {X I to be minimal, cf. [7], which we feel is a strong restriction for
n

- °. . ..
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the ARR of [X and it is desirable to relax it.
n

Our first new result in this paper shows that the condition W L
qxq

or minimality of {X in (1.3) is dispensable for the existence of a mean .7n
convergent ARR of {Xn}. Also this result gives a more general sufficient

condition for the mean convergent ARR of {X which includes both (1.3) and
n

(1.4) as special cases.

To state this result and for later use we denote the class of densities

satisfying (1.3) by M, those satisfying (1.4) by A and define a new class .

A M by A ) M =I{W; 12 1 , W1  A and W2 c MI, where W denotes
byA• M={; = :2 W 2 .

the positive square root of W V Note that by choosing W = I (W I) we see1 1....

that this new class has M(A) as its proper subset. Now, we can state our first p

theorem which is an immediate consequence of Theorem 3.2. We note that this

theorem is a multivariate extension of a similar (univariate) result of Bloomfield

[3] and that the factorization W = W W2 used by Bloomfield is not suitable in p

the multivariate setting, since the product of two positive definite matrices is

not necessarily a positive definite matrix.

theorem 1.1. Let [X I be a purely nondeterministic full rank SSP with the In
spectral density matrix W. If W e A (Z) M, then {X I has a mean convergent

n
ARR.

It is easy to check that a W in A(0DM does not necessarily have the

io Xproperty W 1  L1  (As an example when q = 1, one can take W = 11 - eqxq

I A .2.) But, for W F. A 0M, W"  is necessarily in L . Note that theqxq

scalar density W = I - eiO 2 which corresponds to the univariate SSP

Xn n - n-1 does not belong to the univariate version of A@ M. Thus,

Theorem 1.1 does not provide any information concerning the existence of a mean ..

convergent ARR for this process. However, this process {X I can not have a Sn
mean convergent ARR, since in this case the infinite series in 11.1), i.e.

.. ,°

S * ~. . .. . . . ..
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-k 1 Xn~k does not converge in the mean. This example shows that processes
k=1 -

{Xn I for which W is not in AO)M (or in other words 'if W has zeros of order

2 or more), can not have mean convergent AKR. in view of this it is natural to

ask whether such processes can have an ARR with a weaker requirement of conver-

gence, say summability, for the infinite series Z Ak Xn-k in (1.1). The
k=1 .

next theorem shows that this is actually possible for a large class of processes

when we replace the mean convergence of the series (1.1) by its mean Abel summa-

bility, and compounded Cesciro sumability.

We say that {X I has a mean Abel summable ARR if the infinite seriesn CO:•

in (1.1) is Abel summable in the mean, i.e. lim I r A X exists in the
r-4-k=1 kn-

mean for each n. The next theorem is immediate from Theorem 3.4(c).

Theorem 1.2. Let {XnI be a purely nondeterministic full rank SSP with the

spectral density W. Let P be a complex-valued trigonometric polynomial of

some degree n and 'E A(D M. If W = 2Wthen {X } has a mean Abel summ-
n

able ARR.

From practical point of view (specially for the purpose of prediction)

the mean Abel summable ARR of {X I is not particularly useful for the followingCO n CO.-:

reason: lim Z rk Ak X can be approximated by X rok Ak Xn~k where rr-k = n-k 0 k-'-":
r-14 k=1-k"

is near one. Then, since only a finite segment of the past is available, one
SN k

has to further approximate the infinite sum .r Ak Xn by k r0 Ak Xnk0 k1n -k 0 k. -."'
k 1k =I ..

where N is the number of available observations from the past. This introduces
A

two sources of error in computing, say, Xnni in view of this it is desirable

to replace the Abel summability of the series in (1.1) by another method of

summability which reduces the two sources of error to just one. For this it

seems that the Cesdro, or compounded Cesiro summability is more appropriate.

In the following we provide a different reason (motivated by a computational

problem in prediction theory) for the feasibility of the compounded Cesaro

%%,'..,.:
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summability method in ARR of {X 1.
n

Since C Mn -1(W, it is well-known that

A N
(1.5) X rlin A Xnn-1 N- k= n-k'

W k.

where the ANk's are some q x q constant matrices to be determined. For a

fixed N, the matrices ANk, 1 5 k !< N, can be found by inverting an (N+l)qx(N+l)q

matrix. However, as N increases this procedure requires inverting larger matrices

and thus becomes less feasible computationally. This is caused mainly by the depen-

dence of A on N. Thus to overcome this computational problem it is desirable to
Nk

find a condition on W which guarantees that either the A Nk's in (1.5) can be

replaced by Ak's or by aNk Ak, 5 , where aNk is a scalar depending only on k

and N but not on W. Obviously, if the former case prevails then (1.5) reduces

to (1.2) or (1.1), and if the latter case prevails we have

N N
(1.6) X =lim NkAk Xn-k n

n N-Nk k +n
WO k -1

In either case we have A = -G 2D , k = 1,2,..., where the D 's are the Fourierk k k
(Taylor) coefficients of ' cf. [9..

Let jN I be a fixed increasing sequence of positive numbers such that

'N N - -
Irim 0 0. We say that {X } has a mean compounded Cesiro summable ARR (corre-

sponding to {Nk) if (1.6) holds with
AN

0Nk= N _k NI) ii - Ni-

N k1,,.... K 1,2,...,N. For more information on the compounded Cesaro summa-

bility and the Nk 's see Section 3, Theorem 3.5 and the discussion preceeding it.

Nk*,*



Now, the proof of the next theorem is immediate from Theorem 3.5(b).
Theorem 1.3. Let {X } be a purely nondeterministic full rank SSP with the •

n
spectral density W. Let P be a complex-valued trigonometric polynomial of

2some degree n and W' c A4DM. If W = WPI ', then the process tX I has
n

a mean compounded Cesdro summable ARR. .9

At the end, we would like to note that Theorems 3.4 and 3.5 show the

existence of a mean Abel (compounded Cesaro) summable ARR of {X I only when the
n

spectral density matrix has a finite number of zeros (of any finite orders) on 0

[-rwJ. As yet, we do not have any in )rmation on the ARR of a process whose spec-

tral density has a zero of infinite order. For q 1 1, W(e) = exp{-o-}Al,

0 < x < 1, provides a family of such densities.

2. Notation and Preliminaries.
q

Throughout this note for a q x q matrix A ( Ia. trA : a.i,

A*= (ji ), det A stands for the determinant of A and A"- for the inverse

of A whenever it exists. For two q x q matrices A and B, A :- B means that

A- B 0 0, i.e. A - B is a nonnegative definite matrix. Functions will he

defined on [-fT,r] and we identify this interval with the unit circle in the

complex plane in the natural way. Typical value of a function defined on

or on the unit circle will be denoted by f(e) or f(ei, f stands for
d o -I Sw

and dm for the normalized Lebesgue measure on [-wi], i.e. dm(O) = . For. .

S< , LP(H p ) denotes the usual Lebesgue (Hardy) space of functions on the

unit circle, LP  (HP  ) denotes the space of all q x q matrix-valued functions
qxq qxq

whose entries are in LP(H p ) . .

Let (,,B,P) be a probability space and M L ( i,B,P) the Hilbert

space of all complex-valued random variables on Q with zero expectation and

finite variance. The inner product in M is given by (x,y) = Exy, x, yLM. In

the following, we introduce a few concepts which are needed in this study, for

-.--...-- ...... •• ..- • .. "....".* "* -'-•-.-' .'. ", "," -*--. *-."; ""'- "-.- .--- '.-- -*. .____________"______
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more discussion with proofs see [9, 16].

For an integer q, 1 !5 q < cc, Mqdenotes the cartesian product of M

with itself q times, i.e. the set of all column vectors X =(x 19x2,.X)

q.with x. F_ 1, 1 = 1,2,. .,. 1 is endowed with a Grainian structure. For

X and Y in Mq their Gramian is defined to be the q x q matrix (X,Y) 0

[(x.,y.). It is known that M isa Hilbert space under the inner product

((X,Y)) =tr(X,Y) and norm 11 X1 .((X,X)) provided the linear combinations

are formed with constant q x q matrices as coefficients.

Let {X n E cZ tq {X ;n c 2Z) is said to tle a q-variate stationaryn n

stochastic process (SSP) if the Gram matrix (X m A n) depends only on in-n, for

all integers m and n. Such a process has a spectral representation, i.e. forp

all integers n

(2.1) X n = e- dZ,(8),

*where Z(.) is a countably additive orthogonally scattered vaudmeasure

Ihe q xq -anegative hermitian matrix-valued measure F(.) =(Z(.), Z(.))

* s cal led the spectral measure of {X ).In case F < < in, we say that IX I
n n

has the spectral density W dFfdm on [ri]. It can be shown that W(.)

* is a nonnegative hermitian matrix-valued function and for all integers m,n,

(2.?) (X X) n e-1(m-n)ewl)din(O).

For each SSP [Xn 1, let M (X) r ? {Xk n s k mlin, !5 n :5 m !5<

where spf stands for the closed linear span of elements of I iIn the

*norm of M.The time domain of {X ) denoted by M~(X) is defined by M(X)
n

M (X) The spectral domain corresponding to the spectral density matrix W
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is denoted by L(W) and is defined by

L IT; IF a q x q matrix valued function with 1I'W

I trq*(e)W(e)T(e)dm(e) < ,}
2It is known that L (W) with inner product given by

( ) f tr 4*(O)We)T(e)dmo)

is a Hilbert space and, [9, Theorem 7.3], that the correspondence

t (2.3) T: J'(O)dZ(O)

2
is an isometric isomorphism on L W) onto M(X). T is called the Kolmogorov

isomorphism between the spectral and time domains. It follows from (2.?) and

(2.3) that

(2.4) ( Z A.X., }KBkX) = ( A.e-ijO Z B eikO)
jej J kck jJ keK k 

where J and K are finite sets of integers and A., 8. are q × q constant
.J ,

matrices. An important problem in the prediction theory of an SSP {x } is to
n

find a (meaningful) series representation in the time domain which corresponds

2
to a given T in the spectral domain L (W). The identity (2.4) shows that this

can be done very easily when T is a polynomial of finite degree. However, this

• :.problem is very complicated when T is not of this form.

The prediction problem of an SSP {X I with the spectral density W
* n

can be stated as determining the matrices Ak (in terms of W). f) k such

that for a fixed v 1, the linear least squares predictor of X i.e.n+V

C ,, , " • , . , . t , . . , w • , . , . , . . " - , - " ' . - + - -" " " " " " ' " + - ' ' ' v ' ' " " " - , . " . . . " " ' . - " - " - . "



A X
Xn+v  (X Mn(X)_ can be written as

A N
(2.5) Xn+ =lim AkXk = AkXnk.

M k=O k=O

where for a vector X Mq  and a subspace S of Mq , (X I S) denotes the ortho-

gonal projection of X on the subspace S of .q .

n-1Let cn = Xn - (X nMn (x)), n c 7/. The stochastic process {n ; n e 7"

is called the innovation process of {X }. It is known that (cm , n) = 6 G,n m n mn

where G = (c0l :0) is the prediction error matrix for lag 1. The SSP {XnI is

said to be of full rank if the matrix G is nonsingular. Throughout this note

we assume that {X I is a purely nondeterministic full rank process. This is
n

equivalent to assuming that {Xn I has a spectral density W' such that log iii !

iug det W c L and W where 0 c H is an outer function with 4(O) =
qxq

. We refer to P as the generating function of the process {X n. Since {X n

has full rank, we can define a process {Yn}, called the normalized innovation
n

process of {X Y by Y = G'c . Then (Vm,Yn) = I. By using the Wold'sn n n n mn

decomposition [9] we get an infinite order one-sided moving average representation

for fX }:
n

(2.6) Xn  Ck ,)
K=O "

~(e) = .C

k= k e (c, =G

As a measure of the angle between the past-present and future subspaces

of the process {X I we take its "cosine" defined by
n

p(W) = sup{l((YZ))I: Y C M0 (X) Z C MC(X,

and I Yi -5 1, 11II Z1 1).
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-..

It is clear that 0 < p(W) _< 1. The past-present and future are said to he at

positive angle if p(W) < 1.

23. Mean Convergence of the Fourier Series of 0- in L (W).

As noted in Section I, mean convergence of the Fourier series of 4, in

2L (W) emerges as the only necessary and sufficient condition for the autoregres-

sive representation of a purely nondeterministic full rank process {X I with
n

the spectral density W. This section is devoted to finding useful sufficient

conditions on W which guarantee the mean convergence of the Fourier series of
-1 2*-1 and many more functions in L (W).

We would like to note that for a general density W, (D is not

necessarily in L and therefore the Fourier coefficients of ,-I are notqxq

well-defined. For the next theorem we need the natural assumption on W, that

is W is such that L2(W) c L qxq Under this assumption the Fourier coefficients

2of every function in L (W) is well-defined. It can be shown [10,13,141 tnat
L2(W) 1 if W" c Lq , and only if (det W) e L. Thus this assump-

()cLqxq q xqE:L Tuthsaum

tion is weaker than p(l-') < 1.

The next theorem which is a multivariate extension of a deep theorem of

Helson and Szego [6, p. 131] provides a necessary and sufficient condition for

the mean convergence of the Fourier series of every function in L (W), c.f. [10,

13, 14].

Theorem 3.1. Let W be a q x q matrix-valued density function. Then p(W) < 1,

if and only if L2(W) c Lqxq and the Fourier series of any ' in L (W) converges
L2

to T in the norm of L (W).

Next we find a weaker sufficient condition on W4 which guarantees the

convergence of the Fourier series of every function in a smal I subclass S of

L(W). For a density W, we define S = {(*T L (WI* v. L . te that
q~ x•

this class has 0 as one of its elements. In the following theorem we show

.- ,-...--'.-,._.. ...::*-...-._..-...._ -_,. ."-."_-' .' .. ;..*q.:::-2-..* -%-.-.:.-::-:: - ;'-*:.'.-*:'-:': .: .:.'..- : :': * ''2 ". :::':::-"--:. ' - .- :.::. -::*%- -. 1. .. }
% ~. *a
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that if W c A M4, then the Fourier series of every T in S converges to 'V

in the norm of L 2W). This theorem is a matricial extension of a similar un.i-

variate result due to Bloomfield [3].

Theorem 3.2. Let W be a q ) q matrix-valued density function and S =

2(I 'L (W);YWY* E L' . If WE A OD?! , then the Fourier series of every 0
q~f

function ' E S converges to V in the norm of L-(W).

Proof. Let w and w denote the smallest and largest eigenvalue of W2.1 q 2
Then for WE AOlD we have .

(3.1) _W< W - W W a.e.(Leb.),
qi

and for c E S we have

tr W T dm < fw1 tr WV dm < II try wv II f dm <

2.

which proves that T S implies T E L2(W )
II

Since 'V E L2 (W) and p(W1) < 1, it follows from Theorem 3.1 (and the ,

argument preceeding it) that the Fourier series of every V E S converges to

2 '' in the norm of L (WI) i.e. with S denoting the symmetric n-th partial
n

sum of the Fourier series of V we have

(3.2) IITVl o as n

To finish the proof we need to show that II V - SnII W .0 as n 4-.

But this the consequence of (3.2) and the inequality ..

- 12 ~ '211 - T1 !5 l 1 I [ wy I -S"ll "":
n w q n W'

which follows from (3.1). Q.E.D.

: ,..,' ... . - ..,..._ ..* . . .. .. .. .. .. - € . ..... - .- . .... . .• - ...*.. . - , • -. . . .. -. , -. .. .. .. ,. .
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As mentioned in Section 1, a density in A(E)M can not have a zero of

order 2 or more. Thus Theorem 3.2 does not provide any information in regard to

autoregressive representation of such processes. Also it was noted that such

processes can not have mean convergent autoregressive representation. Therefore

it is natural to replace the requirement of mean convergence of the series for

the autoregressive representation by a weaker mode of convergence for the

series, say, summability. In the following, first we study the Abel summability

of the series involved. For this we need some notation.

2 mne2For a density W we define H 2W) = sp{ei n 0 in (W). Note

2 -1that (P1 c H (W). Also we would like to note that for a general W, 1P and

2 1-other elements of H (W) are note necessarily in L and therefore theirq xq

Fourier coefficients are not well-defined. By an argument similar to that of

2
Rosenblum [15, p.41J one can identify the elements of H (V) with analytic

matrix-valued functions, and thus here by the Fourier coefficients of elements

of H2 W) we actually mean the Taylor coefficients of these analytic functions.

Let P t.) denote the Poisson kernel, i.e. P (a) - 1 -
r r 1-2rcos 8+r2 '

0 < r < 1 and -7 < 0 < . For a function T c H () with Fourier (Taylor)

coefficients {Ty}" the convolution of P and V is defined (and denoted)
k=U r

by

•ei e 0 iko
(3.3) I(fl i ) = T (reie) = (Pr V)(eO) = T 'krk e

k=0

We say that the Fourier (Taylor) series of a function V H (W) is

Abel summable to If in the norm of L (W), if and only if

(3.4) lm - lW = 0.

r-1

%. It follows from the isomorphism between the time and spectral domains

*5 . ..

: " . Q . . .. . . . . .. .. *•• . 9 • • " ° ° m " .. "b . ", "o " . % . ". % % " °° ° o• " ' •Img

kg ._." """. "...-..."_.", s'° ".. '" :._""'"" """". '"""" " " " '""' " """""" " '"""""" " " """ " € ".. .. .,".. ." ..g '-...'.._.'_.',._''_w''.'.'.7;,
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that the autoregressive representation of {X } is mean Abel summable, if and
n

only if the Fourier (Taylor) series of t is Abel summable to 0- in the

norm of L (W).

Next, fol lowing the pattern of Theorems 3.1 and 3.2, we find a necessary

and sufficient condition on W for the Abel summability of the Fourier (Taylor)

series of every function in H2 W). For this the matrix-valued function Q

defined (in terms of 4') by

(3.5) Q(O) = Q(r, 0, .) = -(re )0( ), -n < 6 < W

plays an important role. The following theorem is actually a matricial extension

of some of the (univariate) results due to Rosenblum [15, Theorem 1(iu)].

Theorem 3.3. Let W = 14 be a q x q matrix-valued density function with

log det W c L . Then the following statements are equivalent. f..
2

(a) The Fourier (Taylor) series of every function IV in H (W) is Abel

summable to Y in the norm of L2 (W).

(b) There exists a constant K1 , 0 < K <, such that for all functions

H2H (W) we have

(3.6) jI Pr*PjI w < K1 II 0' 0 < r <. t
r W

(c) Tnere exists a constant K2 , 0 < K2 < Such that

(3.7) (Pr*tr QQ*)(e) 5 K 2 , 0 < r < 1 and -w < 0 s w.

Proof. (a)= (h) follows from the uniform boundedness principle.

(b) =: (a) follows from an argument similar to that given in Rosenblum

[15, pp. 32-33].
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To prove that (b) implies (c), we note that for each 0 < r < I and

-z < x < v the function I(6) = y(e, r, x) (1 - re i(-x))I - (0) is in

22H (W). This is a consequence of the closure theorem for Hq , cf. [8, P. ?PR].

2 2ie-2
By using the simple inequality 4(1-r2 )11-r e I a P (0), and applying (3.6) to

this function IV we get (3.7):

Pr(6-x) tro -  (reiO) o(e) **(o) o*(re l)dm()

22 - 2 f- 70 10
:5 4(1-r) K 1 -r e tr (rei)w(e) P*(re )dm(o)

-Tr

if i (0-x) -2 -1 "

_<4l- 2  lI  1-re tr * (o)wI(e) 4* (relO )dm(O)

= 4q KJ Pr(e-x) dm(e) - 4q K1 .

To prove (c) implies (b) we note that for any Y c H (14) [using the

Cauchy-Schwartz inequality, Fubini's theorem and t 3.7)] that

lIP *JI J tr PVre )¢(B) ¢*(8) v*(re )dm(e)r I W . r T 
:: 

r.

iT

- tr '(re )st(re )Q(e)Q*(e) [,yPre )(re )dm(o)
-iT 10 0- 0

-5 tr QQ* • tr '(re e)(reie) [v(rei) j(re")]*am(o)

q q 2 .

= 7r tr QQ- 4 'VKi(reie )Dk(reie)I dm(o)
k , t= l1 - 7 

- .

=w ftr QQ* P x)( ? k )(x)dm(x)l dm(o)
k,=1 -J -= k(Dig

- q

-< ZI tr ..;( r ex) ( Yk 4 )(x) dm(xO)dm(o)K,= .T .7 r kj t-"

f Jtr T W Y* ( P(x-G)tr QQ*(A)dm(8))dm(x)
- l ? f ' , , P r

K2  W1

Q.E.D.
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Although Theorem 3.3 provides two equivalent necessary and sufficient

conditions for the Abel summability of the Fourier (Taylor) series of every

2- function in H (W), these conditions are hard to apply and are not explicit in

terms of the components of W. In the next theorem by using Theorems 3.1, 3.2

and 3.3 we provide sufficient conditions for the Abel summability of the Fourier

(Taylor) series of all functions in H2 (W) and in particular 0-1, which are

easy to apply and more explicit in terms of the components of W.

Theorem 3.4. Let W4 be a q x q matrix-valued density function with

log det W u L and P be a complex-valued trigonometric polynomial of some

degree n.

(a) If W c A, then the Fourier (Taylor) series of every function TF e HM(W)

is Abel summable to ' in the norm of L2().

* (b) Let W' A. If W = 1pl 2w', then the Fourier (Taylor) series of every
H2  L2IW

function I H (W) is Abel summable to TF in the norm of L (W).

(c) Let S IT { H 2(W); T W * L and W' c A0M. If W = IPt ',qx q

then the Fourier (Taylor) series of every function ' c S is Abel sunuable

to 41 in the norm of L2(W).

Proof. In view of Theorems 3.1 and 3.3, proofs of (a) and (b) are the same

as the proof of Lena 6 in [12]. (c) follows from (b) by using the method of

proof of Theorem 3.2 and replacing S n by fr.  ;EDn by'rQ.E .D.,

Now, we turn to the problem of Cesaro summability of the Fourier

2 2(laylor) series of functions in H (W). Let T c H (W) with Fourier (Taylor)

coefficients {ITk}O and partial sums Sn () = e k . For a > 0, we
k=O

say that the Fourier (Taylor) series of T is (C, a) summable to T in the

norm of L2(W) if

n -k+a1)(
(3.8) lim II k+ sk T ( Wn.

n- k=O - k n J ..-.
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For scalar sequences it is well-known that the strength of (C-(%)

methods increases with a. However, there are series which are Abel summable

but not (C,a)-summable for any a > 0, cf. [5, p. 108]. Because of this and

in view of the importance of relations like (3.8) in prediction of {X 1, cf.
n

Section 1, we consider the stronger method of compounded Cescro summability

method: Let { 10 be a (fixed) monotone increasing sequence of positive num-
nO0

2
bers. We say that the Fourier (Taylor) series of T c H (W) is compounded

Cesdro summable to IF if
n kn + n'lira II +  L- + sk - 0.

n-- k=0 - k n

It is known [1] that the compounded Cesdro summability method is
oL

regular, if and only if lim 0 = . For more information on the subject
nn-ao

of summability and the definition of undefined terms the reader may refer to

The next theorem establishes analogue of Theorem 3.4 for the compounded

Cesaro summabi 1 i ty.

Theorem 3.5. Let W be a q x q matrix-valued density function with
L1

log det W L , P be a complex-valued trigonometric polynomial of some degree

n and { } a (fixed) monotone increasing sequence of positive numbers with
Cx n

lim = 21 0.
n

2
(a) Let W' E A. If W = IPI W', then the Fourier (Taylor) series of every

22function IF H (W) is compounded Cescro summable to T in the norm of L2(W).

(b) Let W' c A OM and S be as in part (c) of Theorem 3.4. If W =IP 2w',

then the Fourier (Taylor) series of every V c S is compounded Cesdro summable

to V in the norm of L2 (W).

* . . .. * . . . . . . . . . . . . . . Y ., . .. . -"
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Proof. We prove only part (a) since the proof of part (b) is the same as the

proof of Theorem 3.4(c). P

2
To prove (a) first we show that every T c H (H) has radial limits

a.e. (Leb.) Let * and 01 be the optimal factors of IP12 and W', respec-

tively. Then 0 the optimal factor of W - IP2w, is given by *oI Since .

W' t. A it follows that 0 C H , and since is an analytic polynomialqxq

of finite degree with no zeros in the open unit disc we have that - H ,
S 6 < !. Thus 1 H 1  2 + • Now, we note that every V c H2 (W) .-

qxqn this 1 1.t
1 -1 2

has a representation of the form T = h - where h c Hqxq, and this entailsHP wi 1 P .- :.

that V c H q with 1 = I + Therefore, every If e H2(W) belongs to H P

qqxq p 2 P1

for some p > 0 , which implies that If has radial limits a.e. The rest of the

proof follows from Theorem 3.4(b) and adoptlng the method of proof of Theorems

6.1 and 6.3 [I. Q.E.D.

L--?

, , °*" %. °
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